Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Sci Total Environ ; 929: 172653, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38649053

ABSTRACT

N,N-dimethylformamide (DMF) is a widely utilized chemical solvent with various industrial applications. Previous studies have indicated that the liver is the most susceptible target to DMF exposure, whereas the underlying mechanisms remain to be elucidated. This study aimed to investigate the role of NLRP3 inflammasome in DMF-induced liver injury in mice by using two NLRP3 inflammasome inhibitors, Nlrp3-/- mice, Nfe2l2-/- mice, and a macrophage-depleting agent. RNA sequencing revealed that endoplasmic reticulum (ER) stress and NLRP3 inflammasome-associated pathways were activated in the mouse liver after acute DMF exposure, which was validated by Western blotting. Interestingly, DMF-induced liver injury was effectively suppressed by two inflammasome inhibitors, MCC950 and Dapansutrile. In addition, knockout of Nlrp3 markedly attenuated DMF-induced liver injury without affecting the metabolism of DMF. Furthermore, silencing Nfe2l2 aggravated the liver injury and the NLRP3 inflammasome activation in mouse liver. Finally, the depletion of hepatic macrophages by clodronate liposomes significantly reduced the liver damage caused by DMF. These results suggest that NLRP3 inflammasome activation is the upstream molecular event in the development of acute liver injury induced by DMF.


Subject(s)
Dimethylformamide , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Inflammasomes/metabolism , Chemical and Drug Induced Liver Injury , Liver/drug effects , Mice, Knockout , Endoplasmic Reticulum Stress/drug effects
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474276

ABSTRACT

Cymbidium sinense, a type of orchid plant, is more drought-resistant and ornamental than other terrestrial orchids. Research has shown that many members of the NUCLEAR FACTOR Y (NF-Y) transcription factor family are responsive to plant growth, development, and abiotic stress. However, the mechanism of the NF-Y gene family's response to abiotic stress in orchids has not yet been reported. In this study, phylogenetic analysis allowed for 27 CsNF-Y genes to be identified (5 CsNF-YAs, 9 CsNF-YBs, and 13 CsNF-YC subunits), and the CsNF-Ys were homologous to those in Arabidopsis and Oryza. Protein structure analysis revealed that different subfamilies contained different motifs, but all of them contained Motif 2. Secondary and tertiary protein structure analysis indicated that the CsNF-YB and CsNF-YC subfamilies had a high content of alpha helix structures. Cis-element analysis showed that elements related to drought stress were mainly concentrated in the CsNF-YB and CsNF-YC subfamilies, with CsNF-YB3 and CsNF-YC12 having the highest content. The results of a transcriptome analysis showed that there was a trend of downregulation of almost all CsNF-Ys in leaves under drought stress, while in roots, most members of the CsNF-YB subfamily showed a trend of upregulation. Additionally, seven genes were selected for real-time reverse transcription quantitative PCR (qRT-PCR) experiments. The results were generally consistent with those of the transcriptome analysis. The regulatory roles of CsNF-YB 1, 2, and 4 were particularly evident in the roots. The findings of our study may make a great contribution to the understanding of the role of CsNF-Ys in stress-related metabolic processes.


Subject(s)
Arabidopsis , Plant Proteins , Plant Proteins/genetics , Droughts , Phylogeny , Genome, Plant , CCAAT-Binding Factor/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Stress, Physiological
3.
Adv Sci (Weinh) ; 11(12): e2306993, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233212

ABSTRACT

Passivating contactsin heterojunction (HJ) solar cells have shown great potential in reducing recombination losses, and thereby achieving high power conversion efficiencies in photovoltaic devices. In this direction, carbon nanomaterials have emerged as a promising option for carbon/silicon (C/Si) HJsolar cells due to their tunable band structure, wide spectral absorption, high carrier mobility, and properties such as multiple exciton generation. However, the current limitations in efficiency and active area have hindered the industrialization of these devices. In this review, they examine the progress made in overcoming these constraints and discuss the prospect of achieving high power conversion efficiency (PCE) C/Si HJ devices. A C/Si HJ solar cell is also designed by introducing an innovative interface passivation strategy to further boost the PCE and accelerate the large area preparationof C/Si devices. The physical principle, device design scheme, and performanceoptimization approaches of this passivated C/Si HJ cells are discussed. Additionally, they outline potential future pathways and directions for C/Si HJ devices, including a reduction in their cost to manufacture and their incorporation intotandem solar cells. As such, this review aims to facilitate a deeperunderstanding of C/Si HJ solar cells and provide guidance for their further development.

4.
Sci Total Environ ; 914: 169918, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190899

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plastic additive with persistent characteristics in the environment. This study was designed to investigate the detrimental effects of chronic DEHP exposure at environmental-relevant doses on bone metabolism and the underlying mechanisms. It was found that exposure to 25 µg/kg bw and 50 µg/kg bw DEHP for 29 weeks led to a reduction of whole-body bone mineral density (BMD), femur microstructure damage, decreased femur new bone formation, and increased femur bone marrow adipogenesis in C57BL/6 female mice, which was not observed in mice exposed to 5000 µg/kg bw DEHP. Further in vitro study showed that DEHP treatment robustly promoted adipogenic differentiation and suppressed osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs). Mechanistically, DEHP exposure resulted in elevated expressions of DYRK1B, CDK5, PPARγ, and p-PPARγSer273 in both bone tissue and BMSCs. Interestingly, co-IP analysis showed potential interactions among DYRK1B, PPARγ, and CDK5. Lastly, antagonists of DYRK1B and CDK5 effectively alleviated the BMSCs differentiation disturbance induced by DEHP. These results suggest that DEHP may disturb the BMSCs differentiation by upregulating the PPARγ signaling which may be associated with the activation of DYRK1B and CDK5.


Subject(s)
Diethylhexyl Phthalate , Mesenchymal Stem Cells , Osteoporosis , Phthalic Acids , Female , Mice , Animals , Diethylhexyl Phthalate/toxicity , PPAR gamma/metabolism , Osteogenesis , Mice, Inbred C57BL , Osteoporosis/chemically induced , Mesenchymal Stem Cells/metabolism
5.
Plant Commun ; 5(2): 100719, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37718509

ABSTRACT

Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.


Subject(s)
Brassicaceae , Plant Breeding , Plants/genetics , Poaceae , Brassicaceae/genetics
6.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article in English | MEDLINE | ID: mdl-38006232

ABSTRACT

The distribution of antibiotic-resistance genes (ARGs) in environmental soil is greatly affected by livestock and poultry manure fertilization, the application of manure will lead to antibiotic residues and ARGs pollution, and increase the risk of environmental pollution and human health. Cinnamomum camphora is an economically significant tree species in Fujian Province, China. Here, through high-throughput sequencing analysis, significant differences in the composition of the bacterial community and ARGs were observed between fertilized and unfertilized rhizosphere soil. The application of chicken manure organic fertilizer significantly increased the relative abundance and alpha diversity of the bacterial community and ARGs. The content of organic matter, soluble organic nitrogen, available phosphorus, nitrate reductase, hydroxylamine reductase, urease, acid protease, ß-glucosidase, oxytetracycline, and tetracycline in the soil of C. camphora forests have significant effects on bacterial community and ARGs. Significant correlations between environmental factors, bacterial communities, and ARGs were observed in the rhizosphere soil of C. camphora forests according to Mantel tests. Overall, the findings of this study revealed that chicken manure organic fertilizer application has a significant effect on the bacterial community and ARGs in the rhizosphere soil of C. camphora forests, and several environmental factors that affect the bacterial community and ARGs were identified.


Subject(s)
Cinnamomum camphora , Microbiota , Animals , Humans , Anti-Bacterial Agents/pharmacology , Soil/chemistry , Chickens , Manure/microbiology , Cinnamomum camphora/genetics , Genes, Bacterial , Fertilizers , Rhizosphere , Soil Microbiology , Bacteria/genetics , Microbiota/genetics , Forests
7.
Food Chem Toxicol ; 182: 114198, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995826

ABSTRACT

N,N-dimethylformamide (DMF), a widely consumed industrial solvent with persistent characteristics, can induce occupational liver damage and pose threats to the general population due to the enormous DMF-containing industrial efflux and emission from indoor facilities. This study was performed to explore the roles of allyl methyl disulfide (AMDS) in liver damage induced by DMF and the underlying mechanisms. AMDS was found to effectively suppress the elevation in the liver weight/body weight ratio and serum aminotransferase activities, and reduce the mortality of mice induced by DMF. In addition, AMDS abrogated DMF-elicited increases in malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels and decreases in glutathione (GSH) levels in mouse livers. The increase in macrophage number, mRNA expression of M1 macrophage biomarkers, and protein expression of key components in the NF-κB pathway and NLRP3 inflammasome induced by DMF exposure were all suppressed by AMDS in mouse livers. Furthermore, AMDS inhibited DMF-induced cell damage and NF-κB activation in cocultured AML12 hepatocytes and J774A.1 macrophages. However, AMDS per se did not significantly affect the protein level and activity of CYP2E1. Collectively, these results demonstrate that AMDS effectively ameliorates DMF-induced acute liver damage possibly by suppressing oxidative stress and inactivating the NF-κB pathway and NLRP3 inflammasome.


Subject(s)
Inflammasomes , Liver Diseases , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Dimethylformamide/toxicity , Dimethylformamide/metabolism , Liver Diseases/metabolism , Oxidative Stress , Liver , Glutathione/metabolism
8.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762622

ABSTRACT

The TCP gene family are plant-specific transcription factors that play important roles in plant growth and development. Dendrobium chrysotoxum, D. nobile, and D. huoshanense are orchids with a high ornamental value, but few studies have investigated the specific functions of TCPs in Dendrobium flower development. In this study, we used these three Dendrobium species to analyze TCPs, examining their physicochemical properties, phylogenetic relationships, gene structures, and expression profiles. A total of 50 TCPs were identified across three Dendrobium species; they were divided into two clades-Class-I (PCF subfamily) and Class-II (CIN and CYC/TB1 subfamilies)-based on their phylogenetic relationships. Our sequence logo analysis showed that almost all Dendrobium TCPs contain a conserved TCP domain, as well as the existence of fewer exons, and the cis-regulatory elements of the TCPs were mostly related to light response. In addition, our transcriptomic data and qRT-PCR results showed that DchTCP2 and DchTCP13 had a significant impact on lateral organs. Moreover, changes in the expression level of DchTCP4 suggested its important role in the phenotypic variation of floral organs. Therefore, this study provides a significant reference for the further exploration of TCP gene functions in the regulation of different floral organs in Dendrobium orchids.


Subject(s)
Dendrobium , Dendrobium/genetics , Dendrobium/metabolism , Phylogeny , Transcription Factors/metabolism , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Proteins/metabolism
9.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373311

ABSTRACT

The small plant-specific YABBY gene family plays key roles in diverse developmental processes in plants. Dendrobium chrysotoxum, D. huoshanense, and D. nobile are perennial herbaceous plants belonging to Orchidaceae with a high ornamental value. However, the relationships and specific functions of the YABBY genes in the Dendrobium species remain unknown. In this study, six DchYABBYs, nine DhuYABBYs, and nine DnoYABBYs were identified from the genome databases of the three Dendrobium species, which were unevenly distributed on five, eight, and nine chromosomes, respectively. The 24 YABBY genes were classified into four subfamilies (CRC/DL, INO, YAB2, and FIL/YAB3) based on their phylogenetic analysis. A sequence analysis showed that most of the YABBY proteins contained conserved C2C2 zinc-finger and YABBY domains, while a gene structure analysis revealed that 46% of the total YABBY genes contained seven exons and six introns. All the YABBY genes harbored a large number of Methyl Jasmonate responsive elements, as well as anaerobic induction cis-acting elements in the promoter regions. Through a collinearity analysis, one, two, and two segmental duplicated gene pairs were identified in the D. chrysotoxum, D. huoshanense, and D. nobile genomes, respectively. The Ka/Ks values of these five gene pairs were lower than 0.5, indicating that the Dendrobium YABBY genes underwent negative selection. In addition, an expression analysis revealed that DchYABBY2 plays a role in ovary and early-stage petal development, while DchYABBY5 is essential for lip development and DchYABBY6 is crucial for early sepal formation. DchYABBY1 primarily regulates sepals during blooming. Furthermore, there is the potential involvement of DchYABBY2 and DchYABBY5 in gynostemium development. The results of a comprehensive genome-wide study would provide significant clues for future functional investigations and pattern analyses of YABBY genes in different flower parts during flower development in the Dendrobium species.


Subject(s)
Dendrobium , Dendrobium/genetics , Dendrobium/metabolism , Phylogeny , Genome-Wide Association Study , Flowers/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
10.
Front Cardiovasc Med ; 10: 1160091, 2023.
Article in English | MEDLINE | ID: mdl-37168659

ABSTRACT

Background: People age at different rates. Biological age is a risk factor for many chronic diseases independent of chronological age. A good lifestyle is known to improve overall health, but its association with biological age is unclear. Methods: This study included participants from the UK Biobank who had undergone 12-lead resting electrocardiography (ECG). Biological age was estimated by a deep learning model (defined as ECG-age), and the difference between ECG-age and chronological age was defined as Δage. Participants were further categorized into an ideal (score 4), intermediate (scores 2 and 3) or unfavorable lifestyle (score 0 or 1). Four lifestyle factors were investigated, including diet, alcohol consumption, physical activity, and smoking. Linear regression models were used to examine the association between lifestyle factors and Δage, and the models were adjusted for sex and chronological age. Results: This study included 44,094 individuals (mean age 64 ± 8, 51.4% females). A significant correlation was observed between predicted biological age and chronological age (correlation coefficient = 0.54, P < 0.001) and the mean Δage (absolute error of biological age and chronological age) was 9.8 ± 7.4 years. Δage was significantly associated with all of the four lifestyle factors, with the effect size ranging from 0.41 ± 0.11 for the healthy diet to 2.37 ± 0.30 for non-smoking. Compared with an ideal lifestyle, an unfavorable lifestyle was associated with an average of 2.50 ± 0.29 years of older predicted ECG-age. Conclusion: In this large contemporary population, a strong association was observed between all four studied healthy lifestyle factors and deaccelerated aging. Our study underscores the importance of a healthy lifestyle to reduce the burden of aging-related diseases.

11.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175542

ABSTRACT

Apostasia shenzhenica belongs to the subfamily Apostasioideae and is a primitive group located at the base of the Orchidaceae phylogenetic tree. However, the A. shenzhenica mitochondrial genome (mitogenome) is still unexplored, and the phylogenetic relationships between monocots mitogenomes remain unexplored. In this study, we discussed the genetic diversity of A. shenzhenica and the phylogenetic relationships within its monocotyledon mitogenome. We sequenced and assembled the complete mitogenome of A. shenzhenica, resulting in a circular mitochondrial draft of 672,872 bp, with an average read coverage of 122× and a GC content of 44.4%. A. shenzhenica mitogenome contained 36 protein-coding genes, 16 tRNAs, two rRNAs, and two copies of nad4L. Repeat sequence analysis revealed a large number of medium and small repeats, accounting for 1.28% of the mitogenome sequence. Selection pressure analysis indicated high mitogenome conservation in related species. RNA editing identified 416 sites in the protein-coding region. Furthermore, we found 44 chloroplast genomic DNA fragments that were transferred from the chloroplast to the mitogenome of A. shenzhenica, with five plastid-derived genes remaining intact in the mitogenome. Finally, the phylogenetic analysis of the mitogenomes from A. shenzhenica and 28 other monocots showed that the evolution and classification of most monocots were well determined. These findings enrich the genetic resources of orchids and provide valuable information on the taxonomic classification and molecular evolution of monocots.


Subject(s)
Genome, Mitochondrial , Orchidaceae , Phylogeny , Mitochondria/genetics , RNA, Ribosomal/genetics , Orchidaceae/genetics
12.
J Hazard Mater ; 452: 131262, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36989784

ABSTRACT

Here we report that macrophage AHR/TLR/STAT signaling axis is implicated in the colon colitis induced by non-canonical AHR ligand aflatoxin B1 (AFB1). In BALB/c mice gavaged with 5, 25 and 50 µg/kg body weight/day AFB1, we observed severe colitis featured by over-recruitment of myeloid lineage immune cells such as monocytes/macrophage in colon lamina propria. Stressed and damaged colon epithelial cells were observed in low-dose group, while twisted and shortened intestinal crypts being found in middle dose group. Severe tissue damage was induced in the high-dose group. Dose-dependent increases of ROS, NO, and decrease of mitochondrial ROS-suppressor STAT3 were observed in the exposure groups. Further investigation in AFB1-treated human macrophage model found: (1) functional adaptations such as elevation of TNF-alpha and IL-6 secretion, stimulation of phagocytosis, elevation of LTE4 level; (2) overall inflammatory status confirmed by RNA-sequence analysis, in line with up-regulation of immune functional proteins such as ICAM-1, IDO-1, NF-kB-p65, NLRP3, COX-2 and iNOS; (3) mRNA disruption of mitochondrial oxidative phosphorylation complex I units and STATs; (4) perturbation of AHR/TLR/STAT3 signaling axis, including elevated AHR, TLR2, TLR4, and decreased STAT3, p-STAT3 Ser727. Mechanism investigation revealed regulatory links of ligand-dependent AHR/TLR4/STAT3. AHR-TLR4 together regulate MyD88, and STAT3 may be directly regulated by MyD88 (TLR4 downstream molecule) upon AHR/TLR4 binding with ligands. Solely protein level changes of AHR/TLR4 cannot regulate STAT3. Our study suggests that macrophage AHR/TLR4/STAT3 is involved with the colitis induced by sub-acute exposure to AFB1. Future follow-up study will focus on the intervention of the colitis using AHR-anti-inflammatory ligands.


Subject(s)
Aflatoxin B1 , Colitis , Animals , Mice , Humans , Aflatoxin B1/toxicity , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Ligands , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Follow-Up Studies , Reactive Oxygen Species/metabolism , Colitis/chemically induced , Colitis/metabolism , NF-kappa B/genetics , Macrophages/metabolism , STAT3 Transcription Factor/metabolism
13.
Sci Total Environ ; 872: 162187, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36781137

ABSTRACT

Short-chain chlorinated paraffins (SCCPs) are ubiquitously distributed in various environmental matrics due to their wide production and consumption globally in the past and ongoing production and use in some developing countries. SCCPs have been detected in various human samples including serum, milk, placenta, nail, and hair, and internal SCCP levels were found to be positively correlated with biomarkers of some diseases. While the environmental occurrence has been reported in a lot of studies, the toxicity and underlying molecular mechanisms of SCCPs remain largely unknown. The current tolerable daily intakes (TDIs) recommended by the world health organization/international programme on chemical safety (WHO/IPCS, 100 µg/kg bw/d) and the UK Committee on Toxicity (COT, 30 µg/kg bw/d) were obtained based on a no observed adverse effect level (NOAEL) of SCCP from the repeated-dose study (90 d exposure) in rodents performed nearly 40 years ago. Importantly, the health risks assessment of SCCPs in a variety of studies has shown that the estimated daily intakes (EDIs) may approach and even over the established TDI by UK COT. Furthermore, recent studies revealed that lower doses of SCCPs could also result in damage to multiple organs including the liver, kidney, and thyroid. Long-term effects of SCCPs at environmental-related doses are warranted.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Animals , Humans , China , Hair/chemistry , Hydrocarbons, Chlorinated/analysis , Milk/chemistry , Paraffin/analysis
14.
Ecotoxicol Environ Saf ; 253: 114679, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36841080

ABSTRACT

The potential obesogenic roles of di(2-ethylhexyl) phthalate (DEHP) have attracted great attention. The current study aimed to evaluate the combined effects of chronic low-dose DEHP (0.05 mg/kg BW) and a high-fat diet (HFD) on obesity in female mice and explore the underlying mechanisms. We found that low-dose DEHP challenge for 29 weeks increased fat accumulation both in CD- and HFD-fed mice and significantly accelerated the weight gain without affecting food intake in HFD-fed mice. DEHP exposure reduced the energy metabolism, down-regulated the uncoupling protein 1 (UCP1) and total oxidative phosphorylation (OXPHOS) proteins expression in the brown adipose tissue, and up-regulated the PPARγ expression and its phosphorylation at Ser273 in white adipose tissue (WAT). Besides, the combination of DEHP and HFD drove the remodeling of gut microbiota of mice, characterized by the reduced richness and diversity and the elevated Firmicutes to Bacteroidetes (F/B) ratio. Short-chain fatty acids (SCFAs) analysis revealed that DEHP and HFD cotreatment led to a decrease in levels of acetic acid, butyric acid, and pentanoic acid. Interestingly, sodium butyrate (NaB) significantly inhibited the adipogenesis and lipid accumulation of NIH/3T3 mouse embryonic fibroblasts (PPARγ2 overexpression) and the PPARγ phosphorylation at Ser273 induced by DEHP or MEHP. These findings demonstrate that chronic low-dose DEHP challenge could prompt fat accumulation by increasing PPARγ phosphorylation at Ser273 and decreasing thermogenesis in BAT, which might be associated with the SCFAs reduction.


Subject(s)
Diethylhexyl Phthalate , Animals , Female , Mice , Diet, High-Fat , Diethylhexyl Phthalate/toxicity , Fibroblasts/metabolism , Mice, Inbred C57BL , Obesity/chemically induced , Obesity/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism
15.
Small ; 19(10): e2205848, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36564362

ABSTRACT

The innate inverse Auger effect within bulk silicon can result in multiple carrier generation. Observation of this effect is reliant upon low high-energy photon reflectance and high-quality surface passivation. In the photovoltaics industry, metal-assisted chemical etching (MACE) to afford black silicon (b-Si) can provide a low high-energy photon reflectance. However, an industrially feasible and cheaper technology to conformally passivate the outer-shell defects of these nanowires is currently lacking. Here, a technology is introduced to infiltrate black silicon nanopores with a simple and vacuum-free organic passivation layer that affords millisecond-level minority carrier lifetimes and matches perfectly with existing solution-based processing of the MACE black silicon. Advancements such as the demonstration of an excellent passivation effect whilst also being low reflectance provide a new technological route for inverse Auger multiple carrier generation and an industrially feasible technical scheme for the development of the MACE b-Si solar cells.

16.
Front Plant Sci ; 13: 1068969, 2022.
Article in English | MEDLINE | ID: mdl-36570938

ABSTRACT

TCP gene family are specific transcription factors for plant, and considered to play an important role in development and growth. However, few related studies investigated the TCP gene trait and how it plays a role in growth and development of Orchidaceae. In this study, we obtained 14 TCP genes (CgTCPs) from the Spring Orchid Cymbidium goeringii genome. The classification results showed that 14 CgTCPs were mainly divided into two clades as follows: four PCF genes (Class I), nine CIN genes and one CYC gene (Class II). The sequence analysis showed that the TCP proteins of C. goeringii contain four conserved regions (basic Helix-Loop-Helix) in the TCP domain. The exon-intron structure varied in the clade according to a comparative investigation of the gene structure, and some genes had no introns. There are fewer CgTCP homologous gene pairs compared with Dendrobium catenatum and Phalaenopsis equestris, suggesting that the TCP genes in C. goeringii suffered more loss events. The majority of the cis-elements revealed to be enriched in the function of light responsiveness, followed by MeJA and ABA responsiveness, demonstrating their functions in regulating by light and phytohormones. The collinearity study revealed that the TCPs in D. catenatum, P. equestris and C. goeringii almost 1:1. The transcriptomic data and real-time reverse transcription-quantitative PCR (RT-qPCR) expression profiles showed that the flower-specific expression of the TCP class II genes (CgCIN2, CgCIN5 and CgCIN6) may be related to the regulation of florescence. Altogether, this study provides a comprehensive analysis uncovering the underlying function of TCP genes in Orchidaceae.

17.
Molecules ; 27(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557779

ABSTRACT

Sinomenine is the main component of the vine Sinomenium acutum. It was first isolated in the early 1920s and has since attracted special interest as a potential anti-rheumatoid arthritis (RA) agent, owing to its successful application in traditional Chinese medicine for the treatment of neuralgia and rheumatoid diseases. In the past few decades, significant advances have broadened our understanding of the molecular mechanisms through which sinomenine treats RA, as well as the structural modifications necessary for improved pharmacological activity. In this review, we summarize up-to-date reports on the pharmacological properties of sinomenine in RA treatment, document their underlying mechanisms, and provide an overview of promising sinomenine derivatives as potential RA drug therapies.


Subject(s)
Arthritis, Rheumatoid , Morphinans , Neuralgia , Humans , Arthritis, Rheumatoid/drug therapy , Morphinans/therapeutic use , Morphinans/pharmacology , Medicine, Chinese Traditional , Neuralgia/drug therapy
18.
Front Plant Sci ; 13: 1058287, 2022.
Article in English | MEDLINE | ID: mdl-36518517

ABSTRACT

The GRAS gene family encodes transcription factors that participate in plant growth and development phases. They are crucial in regulating light signal transduction, plant hormone (e.g. gibberellin) signaling, meristem growth, root radial development, response to abiotic stress, etc. However, little is known about the features and functions of GRAS genes in Orchidaceae, the largest and most diverse angiosperm lineage. In this study, genome-wide analysis of the GRAS gene family was conducted in Dendrobium chrysotoxum (Epidendroideae, Orchidaceae) to investigate its physicochemical properties, phylogenetic relationships, gene structure, and expression patterns under abiotic stress in orchids. Forty-six DchGRAS genes were identified from the D. chrysotoxum genome and divided into ten subfamilies according to their phylogenetic relationships. Sequence analysis showed that most DchGRAS proteins contained conserved VHIID and SAW domains. Gene structure analysis showed that intronless genes accounted for approximately 70% of the DchGRAS genes, the gene structures of the same subfamily were the same, and the conserved motifs were also similar. The Ka/Ks ratios of 12 pairs of DchGRAS genes were all less than 1, indicating that DchGRAS genes underwent negative selection. The results of cis-acting element analysis showed that the 46 DchGRAS genes contained a large number of hormone-regulated and light-responsive elements as well as environmental stress-related elements. In addition, the real-time reverse transcription quantitative PCR (RT-qPCR) experimental results showed significant differences in the expression levels of 12 genes under high temperature, drought and salt treatment, among which two members of the LISCL subfamily (DchGRAS13 and DchGRAS15) were most sensitive to stress. Taken together, this paper provides insights into the regulatory roles of the GRAS gene family in orchids.

19.
Toxicol Res (Camb) ; 11(2): 263-271, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35510232

ABSTRACT

Acute liver failure (ALF), characterized by the quick occurrence of disorder in liver, is a serious liver injury with extremely high mortality. Therefore, we investigated whether diallyl trisulfide (DATS), a natural product from garlic, protected against ALF in mice and studied underlying mechanisms. In the present study, lipopolysaccharide (LPS) (10 µg·kg-1)/D-galactosamine (D-gal) (500 mg·kg-1) was intraperitoneally injected to ICR mice to induce ALF. The mice were orally administered 20-, 40-, or 80-mg·kg-1 DATS) 1 h before LPS/D-gal exposure. Serum biochemical analyses and pathological study found that DATS pretreatment effectively prevented the ALF in LPS/D-gal-treated mice. Mechanistically, pretreatment of DATS inhibited the increase of the numbers of CD11b+ Kupffer cells and other macrophages in the liver, the release of tumor necrosis factor-α into the blood, and Caspase-1 activation induced by LPS/D-gal treatment in mice. Furthermore, DATS inhibited the activation of Caspase-3, downregulation of Bcl-2/Bax ratio, and increase of TUNEL positive staining. Altogether, our findings suggest that DATS exhibits hepatoprotective effects against ALF elicited by LPS/D-gal challenge, which probably associated with anti-inflammation and anti-apoptosis.

20.
Food Chem Toxicol ; 164: 113108, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35526736

ABSTRACT

Diallyl disulfide (DADS) has been suggested to possess hepatoprotection against alcoholic liver disease (ALD) by a couple of pilot studies, while the underlying mechanisms remain largely unknown. This study aimed to investigate the hepatoprotective effects of DADS against ethanol-induced liver steatosis and early inflammation by using the chronic-plus-binge mice model and cultured J774A.1 macrophages and AML12 hepatocytes. We found that DADS significantly attenuated ethanol-induced elevation of serum aminotransferase activities, accumulation of liver triglyceride, hepatocytes apoptosis, oxidative stress, infiltration of macrophages and neutrophils, and proinflammatory polarization of macrophages in mice livers. In addition, chronic-plus-binge drinking induced apparent intestinal mucosa damage and disturbance of gut microbiota, endotoxemia, and activation of hepatic NF-κB signaling and NLRP3 inflammasome, which was inhibited by DADS. In vitro studies using cocultured AML12/J774A.1 cells showed that DADS suppressed ethanol/LPS-induced cell injury and inflammatory activation of macrophages. Furthermore, DADS ameliorated ethanol-induced decline of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1 (CPT1), and phosphorylated AMP-activated protein kinase (AMPK) protein levels in mice livers and AML12 cells. These results demonstrate that DADS could prevent ethanol-induced liver steatosis and early inflammation by regulating the gut-liver axis and maintaining fatty acid catabolism.


Subject(s)
Ethanol , Fatty Liver , AMP-Activated Protein Kinases/metabolism , Allyl Compounds , Animals , Disulfides , Ethanol/metabolism , Ethanol/toxicity , Fatty Acids/metabolism , Fatty Liver/chemically induced , Fatty Liver/drug therapy , Fatty Liver/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Liver , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...